2005.09-2009.07 黑龙江中医药大学 食品科学与工程专业,学士学位
2009.09-2011.07 哈尔滨工业大学 食品科学专业, 硕士学位
2011.07-2012.06 光明乳业-乳业生物技术国家重点实验室, 项目主管
2013.03-2017.06 哈尔滨工业大学 化学工程与技术专业,博士学位
2017.07-2021.06 哈尔滨工业大学, 讲师(师资博士后)
2021.06-至今 中科院宁波材料技术与工程研究所,副研究员
主持国家自然科学基金青年项目、“博士后创新人才支持计划”、宁波市“甬江引才工程”、黑龙江省一等博士后基金资助、教育部重点实验室开放基金等科研项目。近五年在Science robotics、Angew. Chem. Int. Ed.、Adv. Mater.、ACS Nano、Small等期刊发表学术论文20余篇,申请中国发明专利2项。荣获博士研究生国家奖学金(2016年)、博士后创新人才支持计划优秀创新成果奖(2020年)、哈尔滨工业大学“我最喜爱的优秀班主任”、“优秀思想政治工作者”等多项奖励。
研究方向:游动微纳米机器人的制备及其生物医学应用
诊疗一体化药物递送系统
液态金属生物医学应用
发表文章:
- H.Y. Zhang#, Z.S. Li#, C.Y. Gao#, X.J. Fan, Y.X. Pang, T.L. Li, Z.G. Wu*, H. Xie, Q. He*, Dual-responded biohybrid neutrobots for active target delivery, Science Robotics, 2021, 6, eaaz9519.
- C.Y. Gao, Y. Wang, Z.H. Ye, Z.H. Lin, X. Ma*, Q. He*, Biomedical Micro-/Nanomotors: From Overcoming Biological Barriers to In Vivo Imaging, Adv. Mater., 2020, 33, 2000512.
- C.Y. Gao#, C. Zhou#, Z.H. Lin, M.C. Yang*, Q. He*, Surface Wettability-Directed Propulsion of Glucose-Powered Nanoflask Motors, ACS Nano, 2019, 13, 11, 12758-12766.
- D.L. Wang#, C.Y. Gao#, W. Wang, M.M. Sun, B. Guo*, H. Xie, Q. He*, Shape-transformable, fusible rod-like swimming liquid metal nanomachine, ACS Nano, 2018, 12, 10212-10220.
- Z.H. Lin, C.Y. Gao*,D.L. Wang, Q. He*, Bubble-propelled Janus Gallium/Zinc Micromotors for Active Treatment of Bacterial Infection, Angew. Chem. Int. Ed., 2021, 60, 8750-8754.
- C. Zhou#, C.Y Gao#, Y.J Wu*, T.Y Si, M.C. Yang*, Q. He*, Torque-Driven Orientation Motion of Chemotactic Colloidal Motors, Angew. Chem. Int. Ed., 2022,61,e2021160.
- M.J. Xuan#, R. Mestre#, C.Y. Gao#, C. Zhou, Q. He*, S. Sánchez*, Non-continuous super-diffusive dynamics of light-activated nanobottle motor, Angew. Chem. Int. Ed., 2018, 57, 6838-6842.
- C.Y. Gao, Z.H. Lin, B. Jurado-Sánchez, X.K. Lin, Z.G. Wu*, Q. He*, Stem cell membrane-coated nanogels for highly efficient in vivo tumor targeted drug delivery. Small,2016, 12, 4056-4062.
- C. Y. Gao, Z. H. Lin, D. L. Wang, Z. G. Wu*, Q. He*, Acoustically propelled red blood cell-like hemoglobin micromotors for enhanced photodynamic cancer therapy. ACS Appl. Mater. Interfaces, 2019, 11, 23392-23400.
- C. Y. Gao, Z. H. Lin, Z. G. Wu*, X. K. Lin, Q. He*, Stem-cell-membrane camouflaging on near-infrared photoactivated upconversion nanoarchitectures for in vivo remote-controlled photodynamic therapy, ACS Appl. Mater. Interfaces, 2016, 8, 34252-34260.
- C.Y. Gao, Z.G. Wu, Z.H. Lin, X.K. Lin, Q. He*, Polymeric capsule cushioned leukocyte cell membrane vesicles as a biomimetic delivery platform, Nanoscale, 2016, 8, 3548-3554.
- Z. H. Lin#, C. Y. Gao#, M. L. Chen, X. K. Lin, Q. He*, Collective motion and dynamic self-assembly of colloid motors. Curr. Opin. Colloid Interface Sci., 2018, 35, 51-58.
- C. Zhou, C.Y. Gao*, Z.H. Lin, D.L. Wang, Y. Li, Y. Yuan, B.H. Zhu, Q. He*, Autonomous Motion of Bubble-Powered Carbonaceous Nanoflask Motors, Langmuir, 2020, 36, 25, 7039-7045.
- C.Y. Gao, Z.H. Lin, D.L. Wang, C. Zhou, Q. He, Acoustophoretic Motion of Erythrocyte-mimicking Hemoglobin Micromotors, Chinese J. Chem., 2020, 202000347.
- D.L. Wang, C.Y. Gao*, Q. He*, Near-Infrared Light Propelled Motion of Needlelike Liquid Metal Nanoswimmers, Colloid. Surface. A, 2020, 611, 125865.
- Y. Yuan, C. Y. Gao*, D. L. Wang, C. Zhou, B. H. Zhu*, Q. He, Janus micromotor based on-off luminescence sensor for active TNT detection. Beilstein J. Nanotechnol., 2019, 10, 1324-1331.
- C. Y. Gao, Z. Lin, X. K Lin, Q. He*, Cell Membrane-Camouflaged Colloid Motors for Biomedical Applications, Adv. Therap., 2018, 1800056.
- D.L. Wang, C.Y. Gao*, C. Zhou, Z.H. Lin, Q. He*, Leukocyte Membrane-Coated Liquid Metal Nanoswimmers for Actively Targeted Delivery and Synergistic Chemophotothermal Therapy, Research, 2020, 3676954.
- D.L. Wang, Z.H. Lin, C. Zhou, C.Y. Gao*, Q. He*, Liquid Metal Gallium Micromachines Speed Up in Confining Channels, Adv. Intell. Sys., 2019, 1, 1900064.
- Y. Yuan, C.Y. Gao*, Z.X. Wang, J.M. Fan, H.F. Zhou, D.L. Wang, C. Zhou, B.H. Zhu*, Q. He*, Upconversion-nanoparticle-functionalized Janus micromotors for efficient detection of uric acid, J. Mater. Chem. B, 2022,10, 358-363.